		Q1. The following data gives the velocity of a particle for 20 seconds at an interval of 5 seconds. Find the initial and final acceleration using the entire data											
	t:	0	5	10	15		me enu	ie uata					
		0	3	14		20 228							
	v:								th f	.11			
										ollowing da	ıta:		
	x:	50		51	52	53	54		55	56			
	<i>y</i> :	3.68		3.7084	3.7325			798	3.8030	3.8259	1.0" 1.1."	1	
				100					ch y is ma	ximum and	d find this v	alue of y	
	x:	3	4		5	6	7	8					
	<i>y</i> :	0.20).224					
		Q4. From the following table find the minimum value of y											
	x:												
	y: 0.6221 0.6155 0.6138 0.6170												
	Q5. Derive Newton-Cote's quadrature formula for equidistant interval. Deduce rules for $n = 1$,												
	2,			5 0									
	Q6. Evaluate $\int_4^{5.2} log_e x \ dx$ by trapezoidal rule by taking $h = 0.2$. Q7. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using (i) Trapezoidal rule, (iv) Boole's Mathod (ii) Simpson's 1/3 rule,												
		(iii) Simpson's 3/8 rule. (v) Weddle's Method											
	Q8. Evaluate $\int_0^{0.96} f(x) dx$ where $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$ by												
	usi	using (i) Trapezoidal rule, (iv) Boole's Mathod											
					Trapezoidal rule,			(iv) Boole's Mathod					
		(ii) Simpson's 1/3 rule, (iii) Simpson's 3/8 rule.						(v) Weddle's Method					
	00	The			•		` ´				n time t . the	W are	
		ated as			particle ii	loving in	a straigi	it fiffe (covers a u	istance a n	n time t. tile	ly aic	
	x:	0	10110		30	40							
		45	60	65									
							10 units						
	Find time taken to traverse the distance of 40 units. Q10. A river is 80 ft wide. The depth d in feet at a distance x ft from ane bank is given by the following table:												
	x:	0	10	20	30	40	50	60	70	80			
	d:		4	7	9	12	15	14	8	3			
	ou i	Ü		•		12	10		Ü	J			

Q1. Using Taylor series method solve $\frac{dy}{dx} = 3x + \frac{y}{2}$ to y(0) = 1 at x = 0.1 and x = 0.2.

Ans: 1.06652, 1.20241

Q2. Use Taylor series solution to solve $\frac{dy}{dx} = x^3 + y$ for x = 1.1, 1.2, 1.3, 1.4, 1.5 with the initial condition y(1) = 1.

Ans: 1.225, 1.512, 1.874, 2.327, 2.889

Q3. Consider the initial value problem $\frac{dy}{dx} = y - x^2 + 1$, y(0) = 0.5 Find y(0.2) by Euler's and Modified Euler's Method

Ans: 0.8, 0.828

Q4. Apply Runge-Kutta method to find an approximate value of y for x = 0.2 in steps of 0.1, if $\frac{dy}{dx} = x + y^2$ given that y = 1 when x = 0.

Ans: 1.2736

Q5. Using Runge-Kutta method of fourth order solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ given that y(0) = 1 at x = 0.2, 0.4.

Ans: 1.19598, 1.3751

Q6. Solve numerically $\frac{dy}{dx} = x^2 + y^2 - 2$ using Milne's predictor corrector method for x = 0.3 given the initial value x = 0, y = 1. The values of y for x = -0.1, 0.1, 0.2 should be computed by Taylor series expansion.

Ans: 0.6148

Q7. Solve numerically $\frac{dy}{dx} = 2e^x - y$ at x = 0.4 and 0.5 by Adams- Bashforth and Moulton method, given that y(0) = 2.

Ans: y(0.4) = 2.1621, y(0.5) = 2.2447.