Constructors and destructors
Objects generally need to initialize variables or assign dynamic memory during their process of creation to become
operative and to avoid returning unexpected values during their execution. For example, what would happen if in
the previous example we called the member function area() before having called function set_values()? Probably
we would have gotten an undetermined result since the members x and y would have never been assigned a value.

In order to avoid that, a class can include a special function called constructor, which is automatically called
whenever a new object of this class is created. This constructor function must have the same name as the class,
and cannot have any return type; not even void.

We are going to implement CRectangle including a constructor:
// example: class constructor
#include <iostream>
using namespace std;
class CRectangle {
int width, height;
public:
CRectangle (int,int);
int area () {return (width*height);}
};
CRectangle::CRectangle (int a, int b) {
width = a;
height = b;
}
int main () {
CRectangle rect (3,4);
CRectangle rectb (5,6);
cout << "rect area: " << rect.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
return 0;
}
Output-

rect area: 12
rectb area: 30
As you can see, the result of this example is identical to the previous one. But now we have removed the member
function set_values(), and have included instead a constructor that performs a similar action: it initializes the
values of x and y with the parameters that are passed to it.

Notice how these arguments are passed to the constructor at the moment at which the objects of this class are
created:

CRectangle rect (3,4);
CRectangle rectb (5,6);

Constructors cannot be called explicitly as if they were regular member functions. They are only executed when a
new object of that class is created.

You can also see how neither the constructor prototype declaration (within the class) nor the latter constructor
definition include a return value; not even void.

The destructor fulfills the opposite functionality. It is automatically called when an object is destroyed, either
because its scope of existence has finished (for example, if it was defined as a local object within a function and the
function ends) or because it is an object dynamically assigned and it is released using the operator delete.
The destructor must have the same name as the class, but preceded with a tilde sign (~) and it must also return no
value.

The use of destructors is especially suitable when an object assigns dynamic memory during its lifetime and at the
moment of being destroyed we want to release the memory that the object was allocated.
// example on constructors and destructors
#include <iostream>
using namespace std;
class CRectangle {
int *width, *height;
public:
CRectangle (int,int);
~CRectangle ();
int area () {return (*width * *height);}
};
CRectangle::CRectangle (int a, int b) {
width = new int;
height = new int;
*width = a;
*height = b;
}
CRectangle::~CRectangle () {
delete width;
delete height;
}
int main () {
CRectangle rect (3,4), rectb (5,6);
cout << "rect area: " << rect.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
return 0;
}
Output:

rect area: 12
rectb area: 30
Overloading Constructors

Like any other function, a constructor can also be overloaded with more than one function that have the same
name but different types or number of parameters. Remember that for overloaded functions the compiler will call
the one whose parameters match the arguments used in the function call. In the case of constructors, which are
automatically called when an object is created, the one executed is the one that matches the arguments passed on
the object declaration:
// overloading class constructors
#include <iostream>
using namespace std;
class CRectangle {
int width, height;
public:
CRectangle ();
CRectangle (int,int);
int area (void) {return (width*height);}
};
CRectangle::CRectangle () {
width = 5;
height = 5;
}
CRectangle::CRectangle (int a, int b) {
width = a;
height = b;
}
int main () {
CRectangle rect (3,4);
CRectangle rectb;
cout << "rect area: " << rect.area() << endl;
cout << "rectb area: " << rectb.area() << endl;
return 0;
}
Output-

rect area: 12
rectb area: 25

Default constructor

If you do not declare any constructors in a class definition, the compiler assumes the class to have a default
constructor with no arguments. Therefore, after declaring a class like this one:

class CExample {
public:
int a,b,c;
void multiply (int n, int m) { a=n; b=m; c=a*b; };
};

The compiler assumes that CExample has a default constructor, so you can declare objects of this class by simply
declaring them without any arguments:

CExample ex;

But as soon as you declare your own constructor for a class, the compiler no longer provides an implicit default
constructor. So you have to declare all objects of that class according to the constructor prototypes you defined for
the class:
class CExample {
public:
int a,b,c;
CExample (int n, int m) { a=n; b=m; };
void multiply () { c=a*b; };
};
Parameterize constructor 
Here we have declared a constructor that takes two parameters of type int. Therefore the following object
declaration would be correct:

CExample ex (2,3);
But,
CExample ex;

Would not be correct, since we have declared the class to have an explicit constructor, thus replacing the default
constructor.

But the compiler not only creates a default constructor for you if you do not specify your own. It provides three
special member functions in total that are implicitly declared if you do not declare your own. 

Copy constructor

These are the copy constructor, the copy assignment operator, and the default destructor.

The copy constructor and the copy assignment operator copy all the data contained in another object to the data
members of the current object. For CExample, the copy constructor implicitly declared by the compiler would be
something similar to:

CExample::CExample (const CExample& rv)
 {
a=rv.a; b=rv.b; c=rv.c;
}
Therefore, the two following object declarations would be correct:
CExample ex (2,3);
CExample ex2 (ex); // copy constructor (data copied from ex)

