
Appendix A

Matrix Operations

In this appendix we list some of the important facts about matrix operations
and solutions to systems of linear equations.

A.1. Matrix Multiplication

The product of a row a = (a1, . . . , an) and a column x = (x1, . . . , xn)T is a
scalar:

ax =

(a1 a2 · · · an)










x1

x2

...
xn











= a1x1+· · ·+anxn = x1a1+· · ·+xnan. (A.1)

The product of an m × n matrix A and the column vector x has two defi-
nitions, and you should check that they are equivalent. If we think of A as
being made of m rows ri, then

Ax =











r1

r2

...
rm











x =











r1x

r2x

...
rmx











. (A.2)

In practice, that is how the product Ax is usually calculated. However, it
is often better to think of A as being comprised of n columns ai, each of
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height m. From that perspective,

Ax =



a1 a2 · · · an















x1

x2

...
xn











= x1a1 + x2a2 + · · · + xnan. (A.3)

That is, the product of a matrix with a vector is a linear combination of
the columns of the vector, with the entries of the vector providing the coef-
ficients.

Finally, we consider the product of two matrices. If A is an m×n matrix
and B is an n× p matrix, then AB is an m× p matrix whose ij entry is the
product of the ith row of A and the jth column of B. That is,

(AB)ij =
∑

k

AikBkj. (A.4)

This can also be expressed in terms of the columns of B.

AB = A(b1,b2, . . . ,bp) = (Ab1, Ab2, . . . , Abp). (A.5)

The matrix A acts separately on each column of B.

A.2. Row reduction

The three standard row operations are:

(1) Multiplying a row by a nonzero scalar.

(2) Adding a multiple of one row to another.

(3) Swapping the positions of two rows.

Each of these steps is reversible, so if you can get from A to B by row
operations, then you can also get from B to A. In that case we say that the
matrices A and B are row-equivalent.

Definition. A matrix is said to be in row-echelon form if (1) any rows made
completely of zeroes lie at the bottom of the matrix and (2) the first nonzero
entries of the various rows form a staircase pattern: the first nonzero entry
of the k + 1st row is to the right of the first nonzero entry of the kth row.

For instance, of the matrices








1 2 3 5
0 0 1 2
0 0 0 4
0 0 0 0









,









1 2 3 5
0 0 1 2
0 0 0 0
0 0 0 4









,









1 2 3 5
0 0 1 2
0 0 1 0
0 0 0 4









, (A.6)

only the first is in row-echelon form. In the second matrix, a row of zeroes
lies above a nonzero row. In the third matrix, the first nonzero entry of the
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third row is under, not to the right of, the first nonzero entry of the second
row.

Definition. If a matrix is in row-echelon form, then the first nonzero entry
of each row is called a pivot, and the columns in which pivots appear are
called pivot columns.

If two matrices in row-echelon form are row-equivalent, then their pivots
are in exactly the same places. When we speak of the pivot columns of a
general matrix A, we mean the pivot columns of any matrix in row-echelon
form that is row-equivalent to A.

It is always possible to convert a matrix to row-echelon form. The stan-
dard algorithm is called Gaussian elimination or row reduction. Here it is
applied to the matrix

A =









2 −2 4 −2
2 1 10 7
−4 4 −8 4
4 −1 14 6









. (A.7)

(1) Subtract the first row from the second.

(2) Add twice the first row to the third.

(3) Substract twice the first row from the fourth. At this point the
matrix is









2 −2 4 −2
0 3 6 9
0 0 0 0
0 3 6 10









. (A.8)

(4) Subtract the second row from the fourth.

(5) Finally, swap the third and fourth rows. This gives a matrix,

Aref =









2 −2 4 −2
0 3 6 9
0 0 0 1
0 0 0 0









, (A.9)

in row-echelon form, that is row-equivalent to A. To get a partic-
ularly nice form, we can continue to do row operations:

(6) Divide the first row by 2.

(7) Divide the second row by 3.

(8) Add the third row to the first.

(9) Subtract three times the third row from the second.

(10) Add the second row to the first.
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This gives a matrix,

Arref =









1 0 4 0
0 1 2 0
0 0 0 1
0 0 0 0









, (A.10)

in what is called reduced row-echelon form.

Definition. A matrix is in reduced row-echelon form if (1) it is in row-
echelon form, (2) all of the pivots are equal to 1, and (3) all entries in the
pivot columns, except for the pivots themselves, are equal to zero.

For any matrix A there is a unique matrix Arref, in reduced row-echelon
form, that is row-equivalent to A. Arref is called the reduced row-echelon
form of A. Most computer linear algebra programs have a built-in routine
for converting a matrix to reduced row-echelon form. In MATLAB it is
“rref”.

A.3. Rank

Definition. The rank of a matrix is the number of pivots in its reduced
row-echelon form.

Note that the rank of an m × n matrix cannot be bigger than m, since
you can’t have more than one pivot per row. It also can’t be bigger than
n, since you can’t have more than one pivot per column. If m < n, then
the rank is always less than n and there are at least n−m columns without
pivots. If m > n, then the rank is always less than m and there are at least
m − n rows of zeroes in the reduced row-echelon form.

If we have a square n×n matrix, then either the rank equals n, in which
case the reduced row-echelon form is the identity matrix, or the rank is less
than n, in which case there is a row of zeroes in the reduced row-echelon
form, and there is at least one column without a pivot. In the first case
we say the matrix is invertible, and in the second case we say the matrix
is singular. The determinant of the matrix tells the difference between the
two cases. The determinant of a singular matrix is always zero, while the
determinant of an invertible matrix is always nonzero.

As we shall soon see, the rank of a matrix equals the dimension of
its column space. A basis for the column space can be deduced from the
positions of the pivots. The dimension of the null space of a matrix equals
the number of columns without pivots, namely n minus the rank, and a
basis for the null space can be deduced from the reduced row-echelon form
of the matrix.
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A.4. Solving Ax = 0.

Suppose we are given a system of equations

a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

...
am1x1 + am2x2 + · · · + amnxn = 0. (A.11)

This is more easily written as Ax = 0, where A =







a11 · · · a1n

...
. . .

...
am1 · · · amn






. Since

multiplying equations by nonzero constants, adding equations and swapping
the order of equations doesn’t change the solution, the equations Ax = 0
are equivalent to Arefx = 0, or to Arrefx = 0. Solving Ax = 0 boils down to
two steps:

(1) Putting A in reduced row-echelon form. This can be done by Gauss-
ian elimination or by computer.

(2) Understanding how to read off the solutions to Arrefx = 0 from the
entries of Arref.

As an example, consider the matrix Arref of equation (A.10). The four
equations read:

x1 + 4x3 = 0,
x2 + 2x3 = 0,

x4 = 0,
0 = 0. (A.12)

Since there are pivots in the first, second and fourth columns, we call x1,
x2 and x4 pivot variables, or constrained variables. The remaining variable,
x3, is called free. Each nontrivial equation involves exactly one of the con-
strained variables. They give that variable in terms of the free variables.
Adding the trivial equation x3 = x3 and removing the 0 = 0 equation we
get:

x1 = −4x3,

x2 = −2x3,

x3 = x3,

x4 = 0. (A.13)

In other words, the free variable x3 can be whatever we wish, and determines
our entire solution. The set of solutions to Ax = 0, also known as the null
space of A or the kernel of A, is all multiples of (−4,−2, 1, 0)T .
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As a second example, consider the matrix

B =









1 2 3 4 5
2 5 8 11 14
1 3 5 8 11
4 10 16 23 30









, (A.14)

whose reduced row-echelon form is

Brref =









1 0 −1 0 1
0 1 2 0 −2
0 0 0 1 2
0 0 0 0 0









. (A.15)

The constrained (pivot) variables are x1, x2 and x4, while x3 and x5 are
free. The equations Bx = 0 are equivalent to Brrefx = 0, which read:

x1 = x3 − x5,

x2 = −2x3 + 2x5,

x4 = − 2x5. (A.16)

Throwing in the dummy equations x3 = x3 and x5 = x5, we get

x = x3













1
−2
1
0
0













+ x5













−1
2
0
−2
1













. (A.17)

The null space of B (i.e., the set of solutions to Bx = 0) is 2-dimensional,
with a basis given by the solution with with x3 = 1 and x5 = 0 and the
solution with x3 = 0 and x5 = 1, namely {(1,−2, 1, 0, 0)T , (−1, 2, 0,−1, 1)T }.

In general, the dimension of the null space is the number of free variables.
The basis vectors are obtained by setting one of the free variables equal to
one, setting the others equal to zero, and using the equations Brrefx = 0 to
solve for the constrained variables.

A.5. The column space

The column space of a matrix is the span of its columns. This is equal to
the span of the pivot columns. The pivot columns are themselves linearly
independent, and so form a basis for the column space.

For example, if B is as in (A.14), then the pivot columns are the first,
second and fourth, as can be read off from the reduced row-echelon form
(A.15). This means that the column space of B is 3-dimensional, and that
a basis is given by {(1, 2, 1, 4)T , (2, 5, 3, 10)T , (4, 11, 8, 23)T }. Note that we
do not use the columns of Brref! We use the columns of B.
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Let b1, . . . ,b5 be the columns of B. The equations Bx = 0 are the same
as

x1b1 + x2b2 + x3b3 + x4b4 + x5b5 = 0. (A.18)

Since there is a solution with x3 = 1 and x5 = 0, we can write b3 as a
linear combination of b1, b2, and b4, specifically b3 = −b1 +2b2. Likewise,
we can write b5 = b1 − 2b2 + b4. Since the columns corresponding to the
free variables are linear combinations of the pivot columns, the span of the
pivot columns is the entire column space. To see that the pivot columns
are linearly independent, suppose that x1b1 + x2b2 + x4b4 = 0. This is a
solution to Bx = 0 with x3 = x5 = 0. However, by (A.17), this means that
x1 = x2 = x4 = 0.

The same arguments apply to any matrix A. Each solution to Ax = 0
with one free variable equal to 1 and the rest equal to zero shows that the
column corresponding to the free variable is a linear combination of the pivot
columns. This means that the pivot columns span the column space of A.
Since the only solution to Ax with all the free variables zero is x = 0, the
pivot columns are linearly independent.

Finally, when do the columns of an m×n matrix span R
m? We already

know that the dimension of the column space equals the rank of the matrix.
If this is m, then the columns span R

m. If the rank is less than m, then the
columns do not span R

m.

A.6. Summary

(1) The product of a matrix and a column vector can be viewed in two
ways, either by multiplying the rows of the matrix by the vector, or
by taking a linear combination of the columns of the matrix with
coefficients given by the entries of the vector.

(2) Using row operations, we can convert any matrix A into a reduced
row-echelon form Arref. This form is unique.

(3) The rank of a matrix is the number of pivots in its reduced row-
echelon form. This equals the dimension of the column space. The
pivot columns of A (not of Arref!) are a basis for the column space
of A.

(4) The columns of an m × n matrix A span R
m if and only if Arref

has a pivot in each row, or equivantly if the rank of A equals m.

(5) The solutions to Ax = 0 are the same as the solutions to Arrefx =
0. Those equations give the pivot variables in terms of the free
variables. The dimension of the null space of A equals the number
of free variables.
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(6) The m × n matrix A is 1–1 if and only if Arref has a pivot in each
column, or equivalently if the rank equals n.

(7) A square n × n matrix either has rank n, in which case its deter-
minant is nonzero, it is row-equivalent to the identity, its columns
are linearly independent, and its columns span R

n, or it has rank
less than n, in which case its determinant is zero, its columns are
linearly dependent, and its columns fail to span R

n.


