

What is Tree ?

- Definition: A tree is a connected undirected graph with no simple circuits.
- Since a tree cannot have a simple circuit, a tree cannot contain multiple edges or loops.
- Therefore, any tree must be a simple graph.
- Theorem: An undirected graph is a tree if and only if there is a unique simple path between any of its vertices.

Spanning Trees

A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree.

A graph may have many spanning trees

OverView

- Tree definition
- Spanning Trees
- Minimum Spanning Trees
- Kruskal's and Prim's algorithms for Minimum Spanning Trees
- Comparison \& Analysis of Kruskal's and Prim's Algorithms
- Why MST ????
- Applications of MST in Sensor Networks
- Conclusion

Spanning trees

- Suppose you have a connected undirected graph
- Connected: every node is reachable from every other node
- Undirected: edges do not have an associated direction
- ...then a spanning tree of the graph is a connected subgraph in which there are no cycles
- Total of 16 different spanning trees for the graph below

Four of the spanning trees of the graph

Minimum Spanning Trees

The Minimum Spanning Tree for a given graph is the Spanning Tree of minimum cost for that graph.

Prim's algorithm

- Start form any arbitrary vertex
- Find the edge that has minimum weight form all known vertices
- Stop when the tree covers all vertices

Prim's algorithm

Prim's algorithm - more complex

Prim's algorithm - more complex

Prim's algorithm

Prim's algorithm

Prim's algorithm

Compare Prim and Kruskal

- Both have the same output \rightarrow MST
- Kruskal's begins with forest and merge into a tree
- Prim's always stays as a tree
- If you don't know all the weight on edges \rightarrow use Prim's algorithm
- If you only need partial solution on the graph \rightarrow use Prim's algorithm

Compare Prim and Kruskal

Complexity

Kruskal: O(NlogN)
comparison sort for edges
Prim: $\mathrm{O}(\mathrm{NlogN})$
search the least weight edge for every vertice

Analysis of Kruskal's Algorithm

Running Time $=O(m \log n)$
($\mathrm{m}=$ edges, $\mathrm{n}=$ nodes)
Testing if an edge creates a cycle can be slow unless a complicated data structure called a "union-find" structure is used.

It usually only has to check a small fraction of the edges, but in some cases (like if there was a vertex connected to the graph by only one edge and it was the longest edge) it would have to check all the edges.

This algorithm works best, of course, if the number of edges is kept to a minimum.

Analysis of Prim's Algorithm

$$
\text { Running Time }=\mathrm{O}(\mathrm{~m}+\mathrm{n} \log \mathrm{n}) \quad(\mathrm{m}=\text { edges, } \mathrm{n}=\text { nodes })
$$

If a heap is not used, the run time will be $O(n \wedge 2)$ instead of $O(m+n \log n)$. However, using a heap complicates the code since you're complicating the data structure. A Fibonacci heap is the best kind of heap to use, but again, it complicates the code.

Unlike Kruskal's, it doesn't need to see all of the graph at once. It can deal with it one piece at a time. It also doesn't need to worry if adding an edge will create a cycle since this algorithm deals primarily with the nodes, and not the edges.

For this algorithm the number of nodes needs to be kept to a minimum in addition to the number of edges. For small graphs, the edges matter more, while for large graphs the number of nodes matters more.

Why do we need MST?

- a reasonable way for clustering points in space into natural groups
- can be used to give approximate solutions to hard problems

MST don't solve TSP

- Travel salesman problem (TSP) can not be solved by MST :
\rightarrow salesman needs to go home (what's the cost going home?)
\rightarrow TSP is a cycle
\rightarrow Use MST to approximate
\rightarrow solve TSP by exhaustive approach try every permutation on cyclic graph

The End

Thank you

