ll Data Structures

Elementary Graph Algorithms
BFS, DFS & Topological Sort

Tzachi (Isaac) Rosen

7/12/2008

ll Graphs

e Agraph, G =(V, E), consists of two sets:

— Vs a finite non-empty set of vertices.

— E is a set of pairs of vertices, called edges.

ll Graphs

* In an undirected graph
— The pair of vertices are unordered pairs.

— Thus, the pairs (v4, v,) and (v,, v,) are the same.

— No reflective (self) edges.

* In a directed graph

— The edges are represented by a directed pair (v,, v,).
— Therefore (v,, v,) and (v,, v,) are two different edges

— v, is the tail and v, the head of the edge.

7/12/2008

7/12/2008

* G, and G, are undirected.
e G, is adirected graph.

° Gl = ({1121314}1 {(112)1(113)1(114)1(213)1(214)1(314)})
* G,=({1,2,3,4,5,6,7}, {(1,2),(1,3),(2,4),(2,5),(3,6),(3,7)})
° G3 = ({11213}1 {<1I2>I <2I1>I <213>})

| Graphs

* The maximum number edges in
— An undirected graph with n vertices is n(n - 1)/2
— A directed graph with n vertices is n2
e An n vertex undirected graph with exactly
n(n-1)/2 edges is said to be complete
0

ll Graphs

e If (vy,v,) is an edge of a graph G, then
— We shall say the vertices v, and v, are adjacent
— And that the edge (v,,v,) is incident on vertices v, and v,
e If (v,,v,) is a directed edge, then vertex v, will be said to be adjacent to v,,
while v, is adjacent from v,.
¢ The degree of a vertex is
— The number of edges incident to that vertex
¢ Incase Gis a directed graph, we define
— the in-degree of a vertex v to be the number of edges for which v is the head.
— The out-degree is defined to be the number of edges for which v is the tail.

o 0
_é) ® @
@ b

Tzachi (Isaac) Rosen

ll Graphs

e Asubgraph of a

graph Gisagrapl ® 0 @ &
G'=(V/, E’) such @é ® & ® @?@
that (2)
-V'cv &
-G cEG. 0, ii o
-
Tzachi (Isaac) Rosen

7/12/2008

ll Graphs

* A path from vertex v, to vertex v, (v, v,) in graph G is
- Asequenceofverﬁcesvwwyvu,”qv v,
such that
= (Vi) (Vig, Vi), (Vi V) are edges
* The length of a path is the number of edges on it
* Asimple path is a path in which
— All vertices except possibly the first and last are distinct

in”

(1 0
é) @ @
(&) OJNOG é

Tzachi (Isaac) Rosen

‘l Graphs

* Acycleis a path in which
— The first and last vertices are the same
* A simple cycle — same with simple path

* When the graph is directed, we add the prefix
"directed" to the terms

> d g
(a) @) 69 }?)

Tzachi (Isaac) Rosen

7/12/2008

ll Graphs

* Inanundirected graph, G, two vertices v, and v, are said to be
connected

— Ifthereis a path in G from v, to v,.
— Since G is undirected, this means there must also be a path from v, to
V.
¢ An undirected graph is said to be connected
— If for every pair of distinct vertices v, v; in there is a path from v, to v;in
G

¢ A (connected) component of an undirected graph is a maximal
connected subgraph

e Atree is a connected acyclic undirected graph

Tzachi (Isaac) Rosen

Simple Nonsimple Free Tree Forest DAG
cycle cycle

Tzachi (Isaac) Rosen

7/12/2008

ll Graph Representation

* Two common ways to represent a graph
(either directed or undirected):
— Adjacency lists.
— Adjacency matrix.

Tzachi (Isaac) Rosen

ll Adjacency Lists

e Array Adj of | V] lists,
— One per vertex.
— Vertex u’s list has all vertices v such that (u, v) € E.
— Works for both directed and undirected graphs.

o]
N

EEE
][
NN

e Space: O(V + E).

— When expressing the running time, we’ll drop the cardinality.
¢ Time to list all vertices adjacent to u: ©(degree(u)).
¢ Time to determine if (u, v) € E: O(degree(u)).

Tzachi (Isaac) Rosen

7/12/2008

7/12/2008

‘l Adjacency Matrix

e |V] x|V| matrix A = (a;)

a _il if(, jyek,

7710 otherwise .

12345
1234
T N 1for o001

(1 2) (1
& A S P (. 2 1fo 100
13) slo 101 0 2(0 0 01
5 (i) 401101 A o 31 o0
&) 4) sli101 0 € (41 4/0 0 11

* Space: O(V?).
* Time to list all vertices adjacent to u: (V).
* Time to determine if (u, v) € E: O(1).

Tzachi (Isaac) Rosen

!l Breadth-First Search

e GivenagraphG=(V, e)and avertexs €EE
— Which vertex is reachable from s
— What is the shortest distance to it
— What is the shortest path

Tzachi (Isaac) Rosen

ll Breadth-First Search

e Algorithm Idea:

— Send a wave out from s:
e First hits all vertices 1 edge from s.
¢ From there, hits all vertices 2 edges from s.
* Etc.
— Use FIFO queue Q to maintain wave front.

e v € Qif and only if wave has hit v but has not come out of v
yet.

Tzachi (Isaac) Rosen

ll Breadth-First Search

* Input:
— Graph G = (V, E), either directed or undirected.
— Source vertex s € V.
¢ Output:
— d[v] =distance to all v € V from s.
e If v € Vis not reachable from s, d[v] = oo.
— m[v] = u such that (u, v) is last edge on shortest path s > v.
e |f v € Vis not reachable from s, mt[v] will be null.
e The set of edges {(nt[v], v) : v # s} forms a tree, such that u is v's predecessor.
¢ Auxiliary Means:

— every vertex has a color:
* White - undiscovered
e Gray - discovered, but not finished (not done exploring from it)
¢ Black - finished (have found everything reachable from it)

Tzachi (Isaac) Rosen

7/12/2008

e
(b) I /T 0
{ 1

I.‘
._—
‘ D=
G \&g -
NN
=0
iw]
=[]

(=) (=) (= wof— (=) Lo
v W X y ! X v
L A i u r 5 I3 u

1 (2 —(=) (=)
0 [o
\ N P
=/) 1212 \g 2,/'—\0_0) 222
v W X y v W X y
r 5 i i r 5 r u
3) 3
© 0 ® o [v]uly]
2) 2—(=) 2 23 2 3 2 33
v W X ¥ v w X v
¥ s i u r 5 1 u
£y
) o [il7] w o [&
3) 3 3 3 3

Tzachi (Isaac) Rosen

ll Breadth-First Search

BFS(G,s)

for (each vertex u € V[G] - {s}) do

color[u] = white, d[u] = oo, t[u] = null
Q = {s}, color[s] = gray, d[s] =0, mt[s] = null
while (Q # @) do

u = dequeue(Q)

for (each v € Adj[u]) do

if (color[v] = white) then

enqueue(Q, v), color[v] = gray, d[v] =d[u] + 1, t[v] =u

color[u] = black

Complexity: O(V + E)

Tzachi (Isaac) Rosen

7/12/2008

10

ll Breadth-First Search

e The shortest-path distance from s to v, (s, v), is:

— The minimum length of the paths fromstov,
or else

— oo, if there is no path from s to v.

e A path of length &(s, v) from s to v is said to be a
shortest path from s to v.

©)
II\E/: \i’/‘
Tzachi (Isaac) Rosen

ll Breadth-First Search

* Theorem:
— Suppose that BFS is run on graph G = (V, E) from a source s € V,
then
— It discovers every vertex v € V that is reachable from s.
— Upon termination, d[v] = 8(s, v) for all v € V.
— For any vertex v # s that is reachable from s,

* One of the shortest paths from s to v is a shortest path from s to m[v]
followed by the edge (m[v], v).

¢ Hence, the path (s, nt[...it[v]]), ..., ([r[v]], [v]), (mt[v], v) is one of the
shortest path from s to v.

Tzachi (Isaac) Rosen

7/12/2008

11

4

Breadth-First Search

e Proof:

We will use the following two facts:

¢ Fact 1: Upon termination, for each v € V, d[v] 2 §(s, v).

* Fact 2: If vertex v; is enqueued before v, during the execution then d[v;] < d[v]].
Assume, for the purpose of contradiction, that there is v € V such that upon
termination d[v] # &(s, v).

If there are more then one, take v with minimum &(s, v).

Clearly v #s.

By fact 1, d[v] = &(s, v), and thus, from the assumption, d[v] > &(s, v).

Vertex v must be reachable from s, for if it is not, then &(s, v) = o= > d[v].

Let u be the vertex immediately preceding v on a shortest path from s to v, so

that 6(s, v) = 8(s, u) + 1. /W,

i u
Bis.vh

Since 8(s, u) < &(s, v), and because of how we chose v, we have d[u] = &(s, u).
Putting these together, we have d(v) > &(s, v) = 6(s, u) + 1 = d[u] + 1.

Tzachi (Isaac) Rosen

4

Breadth-First Search

* Consider the time when vertex u dequeue from Q.
e At this time, vertex v is either white, gray, or black.

If v is white, then the BFS sets d[v] = d[u] + 1, contradiction.

If v is black, then it was already removed from the queue and, by fact 2, we
have d[v] < d[u], contradiction.

If v is gray, then it was painted gray upon dequeuing some vertex w, which was
removed from Q earlier than u and for which d[v] = d[w] + 1.

By fact2, however, d[w] < d[u], and so we have d[v] < d[u] + 1, contradiction.

¢ Thus we conclude that d[v] = §(s, v) for all v € V.

e All vertices reachable from s must be discovered, for if they were not, they
would have infinite d values.

e if t[v] = u, then d[v] = d[u] + 1. Thus, we can obtain a shortest path from s
to v by taking a shortest path from s to n[v] and then traversing the edge
(re[v], v).

¢ By induction, the path (s, it[...n[v]]), ..., (M[r[Vv]], t[v]), (mt[v], v) is one of the
shortest path from s to v.

Tzachi (Isaac) Rosen

7/12/2008

12

ll Printing The Shortest Path

PrintPath (G, s, v)
if (v =s) then
print s
else if (i[v] = null) then
print "no path from" s "to" v "exists"
else
printPath (G, s, rt[v])
print v

‘l Depth-First Search

e Givenagraph G=(V, E)
— Draw G as a forest of sub graphs

— Say which vertex is a descendant of another in the

forest.
— Detect cycles
— Topological Sort

7/12/2008

13

ll Depth-First Search

e Algorithm Idea:
— Search deeper in the graph whenever possible:

e Start from an arbitrary unvisited vertex.

* Explore out one of the undiscovered edge of the most
recently discovered vertex v.

* When all of v's edges have been explored, backtracks,

and continue.

* Start all over again. O i ”f
e
i‘i‘ \{ x\
L.f N 4“ e .L(i
b\(/i j‘-\‘__& "&r
\Z/
Tzachi (Isaac) Rosen

ll Depth-First Search

* Input:
— Graph G = (V, E), either directed or undirected.
* Output:
— d[v] = discovery time & f [v] = finishing time.
¢ Aunique integer from 1to 2|V| such that 1 <d[v] <f[v] £2]|V]|.
— 1[v] = u such that u is the predecessor to v in the visit order.

¢ The predecessor subgraph G = (V, En), where En={(rt[v],v) : m[v]znull}

forms a forest composed of several trees.
* Auxiliary Means:
— every vertex has a color:
¢ White - undiscovered
e Gray - discovered, but not finished (not done exploring from it)
¢ Black - finished (have found everything reachable from it)

Tzachi (Isaac) Rosen

7/12/2008

14

Tzachi (Isaac) Rosen

4

dfs (G)

for (each vertex u € V[G]) do

color[u] = white
nt[u] = null
time=0
for (each vertex u € V[G]) do
if (color[u] = white) then
dfsVisit(u)

No source vertex given.
Will explore every edge.

Complexity: O(V + E).

Depth-First Search

dfsVisit (u)
color[u] = gray
d[u] = time = time+1
for (each v € Adj[u]) do
if (color[v] = white) then
n[v]=u
dfsVisit(v)
color[u] = black
flu] = time = time+1

Tzachi (Isaac) Rosen

7/12/2008

15

ll Depth-First Search

e When one vertex is a descendant of another
in the forest that was constructed by the DFS.

— Parenthesis Theorem
— White-path Theorem

Tzachi (Isaac) Rosen

ll Parenthesis Theorem

¢ Theorem (Parenthesis theorem):

— Forall u, v, exactly one of the following holds:
1. d[u] < f[u] <d[v] < f[v] ord[v] <f[v]<d[u]<f[u]and nelther of uandv |s a
descendant of the other. ; L
2. d[u] <d[v] <f[v] <f[u] and vis a descendant of u. Q"’"— '"’)"_(' 0 Jui
3. d[vl<d[u] <f[u] <f[v]anduisadescendant of v. I B I
— Sod[u] <d[v] < f [u] <f[v] cannot happen.

C B
'\’_‘J,"_ﬂ.)ﬂ!_—"\’_:.‘ﬁ_}"t—‘r 213, e Hm
¢ Like parentheses:

— ok () [1([1) ()] i
— Not OK: ([)11(])

123 4 5 6 7 8 9 101001213 1415 16
(5 2 Ay (x x)p yhdw wh 2} 5) (0 (v v) (w0 w) 1)

¢ Corollary (Nesting of descendants’ intervals):
— vis a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u].

Tzachi (Isaac) Rosen

7/12/2008

16

7/12/2008

b

e Theorem (White-path theorem):

— v is a descendant of u if and only if at time d[u],
there is a path u «» v consisting of only white
vertices (Except for u, which was just colored gray)

Tzachi (Isaac) Rosen

White-path Theorem

'
e

i v
a 2

b

Tree edge:
— Inthe constructed forest.
— Found by exploring (u, v).
Back edge:
— (u, v), where u is a descendant of v.
Forward edge:
— (u, v), where v is a descendant of u, but not a tree edge.
Cross edge:
— any other edge.

— Can go between vertices in same depth-first tree or in different depth-
first trees.

In an undirected graph, there may be some ambiguity since (u, v) &
(v, u) are the same edge.
— Classify by the first type above that matches.

Theorem:

— In DFS of an undirected graph, we get only tree and back edges. No
forward or cross edges.

Tzachi (Isaac) Rosen

Classification of Edges

36 29 1710 11716,
B E, {
c B
4 7, 12713 14415
TP
G i
.
C,

W

17

ll Classification of Edges

e Edge (u, v) can be classified by the color of v
when the edge is first explored:
— WHITE - indicates a tree edge
— GRAY - indicates a back edge

— BLACK indicates a forward or cross edge.
¢ (u, v) is a forward edge if d[u] < d[v]
e (u, v) is a cross edge if d[u] > d[v].

ll Detection of Cycles

e Lemma:

— A directed graph G is acyclic if and only if a DFS of
G yields no back edges.

9

* Proof: NN
‘ | T

— Back edge = Cycle \ 3

e Suppose there is a back edge (u, v). \(*j

¢ Then v is ancestor of u in the constructed forest.
* Therefore, there is a path v-w u, sovw u - vis a cycle.

7/12/2008

18

ll Detection of Cycles

* Cycle =>back edge.

— Suppose G contains cycle C.

— Let v be the first vertex discovered in c, and let (u, v) be the

preceding edge in C.
— At time d[v], vertices of C form a white path v w u

¢ since v is the first vertex discovered in c.

— By white-path theorem, u is descendant of v in depth-first

forest.

.
— Therefore, (u, v) is a back edge. /ey
-
\ \\T
N0

N
Tzachi (Isaac) Rosen

ll Topological Sort

* Directed acyclic graph (dag) is
a directed graph with no cycles
* Good for modeling a partial

order: am @
—a>bandb>c=>a>c. Ry

pants j—————————3shoes)
— May have a and b such that 3[‘ (Shir)
neithera>b norb >c. = /l
=

* Topological sort of a dag: a
linear ordering of vertices such
that if (u, v) EE, then u
appears somewhere before v.

Tzachi (Isaac) Rosen

~
wa(chj

7/12/2008

19

b

topologicalSort (V, E)

Topological Sort

Complexity: O(V + E)

// Assume G is a DAG
Call dfs(V, E) to compute finishing times f[v] forallv € V

Output vertices in order of decreasing finish times

wa(chj 9/10

/’{_7_,_,— i __7-7_-_:_:'*1;: - R
socks "(undershons\—b@lg—@ (watch s jljl\ belt

12/15 pams-\—-"@ 13/14

shirt) 178
o (belty<
Klia 25

jacket) 3/4

17/18 11/16 1215 13/14 9/10 1/8 &7 25 34

Tzachi (Isaac) Rosen

b

e Correctness:

Topological Sort

— Just need to show if (u, v) EE, then f [v] < f [u].

* When we explore (u, v), what are the colors of u and v?

— uis gray.

— vcan't be gray.
¢ Because then (u, v) is a back edge, but G is a dag.

If vis white.

* By parenthesis theorem, d[u] < d[v] < f[v] < f[u].

If vis black.

* Thenvis already finished, but u doesn't, therefore, f [v] < f [u].

Tzachi (Isaac) Rosen

7/12/2008

20

