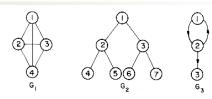


- A graph, G = (V, E), consists of two sets:
 - V is a finite non-empty set of **vertices**.
 - E is a set of pairs of vertices, called **edges**.

Tzachi (Isaac) Rosen

Graphs

- In an undirected graph
 - The pair of vertices are unordered pairs.
 - Thus, the pairs (v_1, v_2) and (v_2, v_1) are the same.
 - No reflective (self) edges.
- In a directed graph
 - The edges are represented by a directed pair (v_1, v_2) .
 - Therefore (v $_{\!\scriptscriptstyle 2}$, v $_{\!\scriptscriptstyle 1}$) and (v $_{\!\scriptscriptstyle 1}$, v $_{\!\scriptscriptstyle 2}$) are two different edges
 - $-v_1$ is the **tail** and v_2 the **head** of the edge.



- G₁ and G₂ are undirected.
- G₃ is a directed graph.
- G₁ = ({1,2,3,4}, {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)})
 G₂ = ({1,2,3,4,5,6,7}, {(1,2),(1,3),(2,4),(2,5),(3,6),(3,7)})
 G₃ = ({1,2,3}, {<1,2>, <2,1>, <2,3>})

Tzachi (Isaac) Rosen

Graphs

- The maximum number edges in
 - An undirected graph with n vertices is n(n 1)/2
 - A directed graph with n vertices is n²
- An n vertex undirected graph with exactly n(n-1)/2 edges is said to be complete

- If (v_1, v_2) is an edge of a graph G, then
 - We shall say the vertices v₁ and v₂ are adjacent
 - And that the edge (v₁,v₂) is incident on vertices v₁ and v₂
- If (v_1, v_2) is a directed edge, then vertex v_1 will be said to be **adjacent to** v_2 , while v_2 is **adjacent from** v_1 .
- The **degree** of a vertex is
 - The number of edges incident to that vertex
- In case G is a directed graph, we define

 - the in-degree of a vertex v to be the number of edges for which v is the head.
 The out-degree is defined to be the number of edges for which v is the tail.

Tzachi (Isaac) Rosen

Graphs

• A subgraph of a graph G is a grapl G' = (V', E') such that

(1)

- $V' \subseteq V$
- G' ⊆ G.

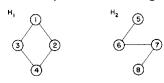
- A path from vertex v_p to vertex v_q (v_p ¬¬¬¬¬ v_q) in graph G is
 - A sequence of vertices $v_{p},v_{i1},v_{i2},$..., v_{in},v_{q} such that
 - $-(v_p, v_{i1}), (v_{i1}, v_{i2}), ..., (v_{in}, v_q)$ are edges
- The length of a path is the number of edges on it
- A simple path is a path in which
 - All vertices except possibly the first and last are distinct

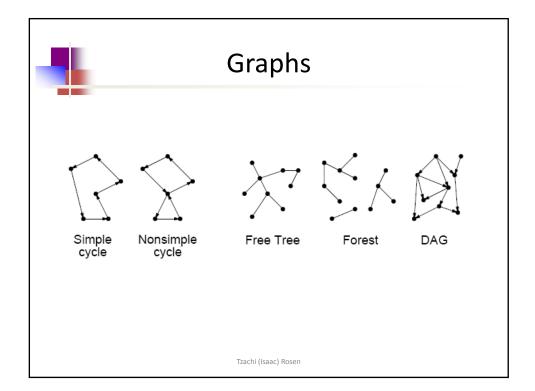
Tzachi (Isaac) Rosen

Graphs

- A cycle is a path in which
 - The first and last vertices are the same
- A simple cycle same with simple path
- When the graph is directed, we add the prefix "directed" to the terms

- In an undirected graph, G, two vertices v₁ and v₂ are said to be connected
 - If there is a path in G from v_1 to v_2 .
 - $-\,$ Since G is undirected, this means there must also be a path from v_2 to $v_1.$
- An undirected graph is said to be connected
 - If for every pair of distinct vertices $\mathbf{v}_i,\,\mathbf{v}_i$ in there is a path from \mathbf{v}_i to \mathbf{v}_j in G
- A (connected) component of an undirected graph is a maximal connected subgraph
- A tree is a connected acyclic undirected graph





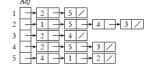
Graph Representation

- Two common ways to represent a graph (either directed or undirected):
 - Adjacency lists.
 - Adjacency matrix.

Tzachi (Isaac) Rosen

Adjacency Lists

- Array Adj of |V| lists,
 - One per vertex.
 - Vertex u's list has all vertices v such that (u, v) ∈ E.
 - Works for both directed and undirected graphs.



- Space: Θ(V + E).
 - When expressing the running time, we'll drop the cardinality.
- Time to list all vertices adjacent to u: Θ(degree(u)).
- Time to determine if (u, v) ∈ E: O(degree(u)).

Adjacency Matrix

• $|V| \times |V|$ matrix $A = (a_{ij})$

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases},$$

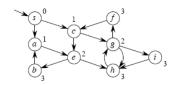
- Space: Θ(V²).
- Time to list all vertices adjacent to u: Θ(V).
- Time to determine if $(u, v) \in E$: O(1).

Tzachi (Isaac) Rosen

Breadth-First Search

- Given a graph G = (V, e) and a vertex s ∈ E
 - Which vertex is reachable from s
 - What is the shortest distance to it
 - What is the shortest path

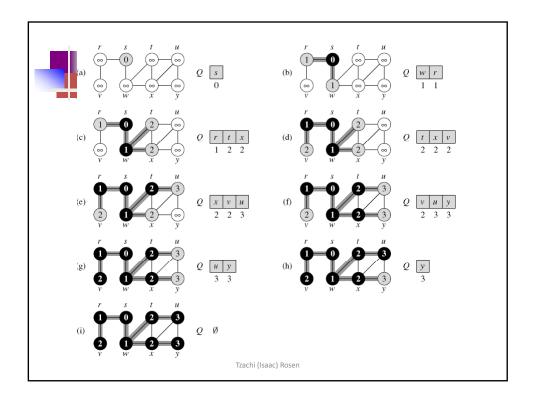
- Algorithm Idea:
 - Send a wave out from s:
 - First hits all vertices 1 edge from s.
 - From there, hits all vertices 2 edges from s.
 - Ftc
 - Use FIFO queue Q to maintain wave front.
 - v ∈ Q if and only if wave has hit v but has not come out of v yet.



Tzachi (Isaac) Rosen

Breadth-First Search

- Input:
 - Graph G = (V, E), either directed or undirected.
 - Source vertex s ∈ V.
- Output:
 - d[v] = **distance** to all v ∈ V from s.
 - If v ∈ V is not reachable from s, d[v] = ∞.
 - $-\pi[v] = u$ such that (u, v) is **last edge on shortest** path $s \rightsquigarrow v$.
 - If $v \in V$ is not reachable from s, $\pi[v]$ will be **null**.
 - The set of edges $\{(\pi[v], v) : v \neq s\}$ forms a **tree**, such that u is v's **predecessor**.
- Auxiliary Means:
 - every vertex has a color:
 - White undiscovered
 - Gray discovered, but not finished (not done exploring from it)
 - Black finished (have found everything reachable from it)




```
\begin{aligned} & \textbf{BFS}(G,s) \\ & \textbf{for} \ (\text{each vertex} \ u \in V[G] - \{s\}) \ \textbf{do} \\ & \text{color}[u] = \textbf{white}, \ d[u] = \infty, \pi[u] = \textbf{null} \\ & Q = \{s\}, \ \text{color}[s] = \textbf{gray}, \ d[s] = 0 \ , \pi[s] = \textbf{null} \\ & \textbf{while} \ (Q \neq \emptyset) \ \textbf{do} \\ & u = \textbf{dequeue}(Q) \\ & \textbf{for} \ (\text{each} \ v \in Adj[u] \ ) \ \textbf{do} \\ & \textbf{if} \ (\text{color}[v] = \textbf{white}) \ \textbf{then} \\ & \textbf{enqueue}(Q, v), \ \text{color}[v] = \textbf{gray}, \ d[v] = d[u] + 1, \pi[v] = u \\ & \text{color}[u] = \textbf{black} \end{aligned}
```


- The **shortest-path distance** from s to v, $\delta(s, v)$, is:
 - The minimum length of the paths from s to v, or else
 - $-\infty$, if there is no path from s to v.
- A path of length $\delta(s, v)$ from s to v is said to be a shortest path from s to v.

Tzachi (Isaac) Rosen

Breadth-First Search

- Theorem:
 - Suppose that BFS is run on graph G = (V, E) from a source s ∈ V,
 then
 - It discovers every vertex v ∈ V that is reachable from s.
 - − Upon termination, $d[v] = \delta(s, v)$ for all $v \in V$.
 - For any vertex v ≠ s that is reachable from s,
 - One of the shortest paths from s to v is a shortest path from s to $\pi[v]$ followed by the edge $(\pi[v], v)$.
 - Hence, the path (s, π[...π[v]]), ..., (π[π[v]], π[v]), (π[v], v) is one of the shortest path from s to v.

- Proof:
 - We will use the following two facts:
 - Fact 1: Upon termination, for each $v \in V$, $d[v] \ge \delta(s, v)$.
 - Fact 2: If vertex v_i is enqueued before v_i during the execution then $d[v_i] \le d[v_i]$.
 - − Assume, for the purpose of contradiction, that there is $v \in V$ such that upon termination $d[v] \neq \delta(s, v)$.
 - If there are more then one, take v with minimum $\delta(s, v)$.
 - Clearly v ≠ s.
 - − By fact 1, $d[v] \ge \delta(s, v)$, and thus, from the assumption, $d[v] > \delta(s, v)$.
 - − Vertex v must be reachable from s, for if it is not, then $\delta(s, v) = \infty \ge d[v]$.
 - Let u be the vertex immediately preceding v on a shortest path from s to v, so that $\delta(s,v)=\delta(s,u)+1$.

 $\delta(s,v)$

- Since $\delta(s, u) < \delta(s, v)$, and because of how we chose v, we have $d[u] = \delta(s, u)$.
- Putting these together, we have $d(v) > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$.

Tzachi (Isaac) Rosen

Breadth-First Search

- Consider the time when vertex u dequeue from Q.
- At this time, vertex v is either white, gray, or black.
 - If v is white, then the BFS sets d[v] = d[u] + 1, contradiction.
 - If v is black, then it was already removed from the queue and, by fact 2, we have d[v] ≤ d[u], contradiction.
 - If v is gray, then it was painted gray upon dequeuing some vertex w, which was removed from Q earlier than u and for which d[v] = d[w] + 1.
 - By fact2, however, $d[w] \le d[u]$, and so we have $d[v] \le d[u] + 1$, contradiction.
- Thus we conclude that $d[v] = \delta(s, v)$ for all $v \in V$.
- All vertices reachable from s must be discovered, for if they were not, they would have infinite d values.
- if $\pi[v] = u$, then d[v] = d[u] + 1. Thus, we can obtain a shortest path from s to v by taking a shortest path from s to $\pi[v]$ and then traversing the edge $(\pi[v], v)$.
- By induction, the path (s, $\pi[...\pi[v]]$), ..., ($\pi[\pi[v]]$, $\pi[v]$), ($\pi[v]$, v) is one of the shortest path from s to v.

Printing The Shortest Path

```
PrintPath (G, s, v)
  if (v = s) then
    print s
  else if (π[v] = null) then
    print "no path from" s "to" v "exists"
  else
    printPath (G, s, π[v])
    print v
```

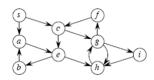
Tzachi (Isaac) Rosen

Depth-First Search

- Given a graph G = (V, E)
 - Draw G as a forest of sub graphs
 - Say which vertex is a descendant of another in the forest.
 - Detect cycles
 - Topological Sort

Depth-First Search

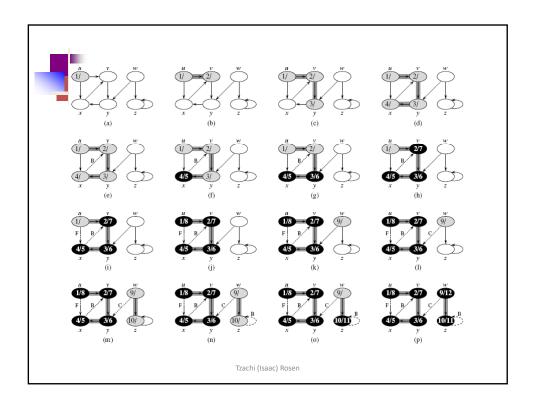
- Algorithm Idea:
 - Search deeper in the graph whenever possible:
 - Start from an arbitrary unvisited vertex.
 - **Explore** out one of the undiscovered edge of the most recently discovered vertex v.
 - When all of v's edges have been explored, **backtracks**, and continue.
 - Start all over again.



Tzachi (Isaac) Rosen

Depth-First Search

- Input:
 - Graph G = (V, E), either directed or undirected.
- Output:
 - d[v] = discovery time & f [v] = finishing time.
 - A unique integer from 1 to 2 | V | such that 1 ≤ d[v] < f [v] ≤ 2 | V |.
 - $-\pi[v]$ = u such that u is the **predecessor** to v in the visit order.
 - The predecessor subgraph Gπ = (V, Eπ), where Eπ={(π[v],v) : π[v]≠null} forms a forest composed of several trees.
- Auxiliary Means:
 - every vertex has a color:
 - White undiscovered
 - Gray discovered, but not finished (not done exploring from it)
 - Black finished (have found everything reachable from it)



Depth-First Search

 $\begin{aligned} & \textbf{dfs} \ (\mathsf{G}) \\ & \textbf{for} \ (\mathsf{each} \ \mathsf{vertex} \ \mathsf{u} \in \mathsf{V}[\mathsf{G}]) \ \textbf{do} \\ & & \mathsf{color}[\mathsf{u}] = \textbf{white} \\ & & \pi[\mathsf{u}] = \textbf{null} \\ & \mathsf{time} = 0 \\ & \textbf{for} \ (\mathsf{each} \ \mathsf{vertex} \ \mathsf{u} \in \mathsf{V}[\mathsf{G}]) \ \textbf{do} \\ & & \mathsf{if} \ (\mathsf{color}[\mathsf{u}] = \mathsf{white}) \ \textbf{then} \\ & & & \mathsf{dfsVisit}(\mathsf{u}) \end{aligned}$

 $\begin{aligned} & \textbf{dfsVisit} \ (\textbf{u}) \\ & \text{color}[\textbf{u}] = \textbf{gray} \\ & \textbf{d}[\textbf{u}] = \textbf{time} = \textbf{time} + 1 \\ & \textbf{for} \ (\textbf{each} \ \textbf{v} \in \textbf{Adj}[\textbf{u}]) \ \textbf{do} \\ & \textbf{if} \ (\textbf{color}[\textbf{v}] = \textbf{white}) \ \textbf{then} \\ & \pi[\textbf{v}] = \textbf{u} \\ & \textbf{dfsVisit}(\textbf{v}) \\ & \textbf{color}[\textbf{u}] = \textbf{black} \end{aligned}$

f[u] = time = time+1

- No source vertex given.
- Will explore every edge.

Complexity: $\Theta(V + E)$.

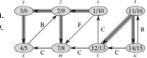
Depth-First Search

- When one vertex is a descendant of another in the forest that was constructed by the DFS.
 - Parenthesis Theorem
 - White-path Theorem

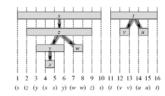
Tzachi (Isaac) Rosen

Parenthesis Theorem

- Theorem (Parenthesis theorem):
 - For all u, v, exactly one of the following holds:
 - d[u] < f[u] < d[v] < f[v] or d[v] < f[v] < d[u] < f[u] and neither of u and v is a descendant of the other.
 - 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u.
 - 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.
 - So d[u] < d[v] < f[u] < f[v] cannot happen.



- Like parentheses:
 - OK:()[]([])[()]
 - Not OK: ([)][(])



- Corollary (Nesting of descendants' intervals):
 - v is a proper descendant of u if and only if d[u] < d[v] < f[v] < f[u].

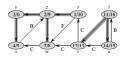
White-path Theorem

- Theorem (White-path theorem):
 - v is a descendant of u if and only if at time d[u], there is a path u wy consisting of only white vertices (Except for u, which was just colored gray)

Tzachi (Isaac) Rosen

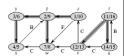
Classification of Edges

- - In the constructed forest.
 - Found by exploring (u, v).
- Back edge:
 - (u, v), where u is a descendant of v.
- Forward edge:
 - (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge:
 - any other edge.
 - Can go between vertices in same depth-first tree or in different depth-first trees.
- In an undirected graph, there may be some ambiguity since (u, v) & (v, u) are the same edge.
 - Classify by the first type above that matches.
- Theorem:
 - In DFS of an undirected graph, we get only tree and back edges. No



Classification of Edges

- Edge (u, v) can be classified by the color of v when the edge is first explored:
 - WHITE indicates a tree edge
 - GRAY indicates a back edge
 - BLACK indicates a **forward or cross edge**.
 - (u, v) is a **forward edge** if d[u] < d[v]
 - (u, v) is a **cross edge** if d[u] > d[v].



Tzachi (Isaac) Rosen

Detection of Cycles

- Lemma:
 - A directed graph G is acyclic if and only if a DFS of G yields no back edges.
- Proof:
 - Back edge ⇒ Cycle
 - Suppose there is a back edge (u, v).
 - Then v is ancestor of u in the constructed forest.
 - Therefore, there is a path $v \rightsquigarrow u$, so $v \rightsquigarrow u \rightarrow v$ is a cycle.

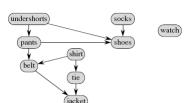
Detection of Cycles

- Cycle ⇒back edge.
 - Suppose G contains cycle C.
 - Let v be the first vertex discovered in c, and let (u, v) be the preceding edge in C.
 - At time d[v], vertices of C form a white path v → u
 - since v is the first vertex discovered in c.
 - By white-path theorem, u is descendant of v in depth-first forest.
 - Therefore, (u, v) is a back edge.

Tzachi (Isaac) Rosen

Topological Sort

- Directed acyclic graph (dag) is a directed graph with no cycles
- Good for modeling a partial order:
 - -a > b and $b > c \Rightarrow a > c$.
 - May have a and b such that neither a > b nor b > c.
- Topological sort of a dag: a linear ordering of vertices such that if (u, v) ∈ E, then u appears somewhere before v.



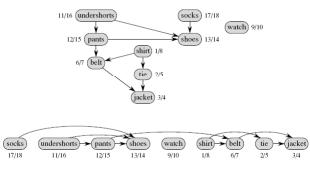
Topological Sort

topologicalSort (V, E)

Complexity: $\Theta(V + E)$

// Assume G is a DAG

Call dfs(V, E) to compute finishing times f[v] for all $v \in V$ **Output** vertices in order of decreasing finish times



Tzachi (Isaac) Rosen

Topological Sort

- Correctness:
 - Just need to show if $(u, v) \in E$, then f[v] < f[u].
- When we explore (u, v), what are the colors of u and v?
 - u is gray.
 - v can't be gray.
 - Because then (u, v) is a back edge, but G is a dag.
 - If v is white.
 - By parenthesis theorem, d[u] < d[v] < f[v] < f[u].
 - If v is black.
 - Then v is already finished, but u doesn't, therefore, f [v] < f [u].